Madrid Mobility Data
Preprocessing Madrid CRTM survey data
Madrid (CRTM: Consorcio Regional de Transportes de Madrid), unlike most other cities, provides a rich open data set on survey data on mobility behaviour of ~85.000 people with ~220.000 individual trips.
The description and results can be found here (in spanish): https://www.crtm.es/media/712934/edm18_sintesis.pdf
For our article we did some preprocessing:
- merging the different data sets
- translate Spanish codes to English and join with data
- simplify some answer options (e.g. modal choice or trip motive)
If you want to use this data set for your own project, this preproessing might help you get started.
import os
import requests
import pandas as pd
import numpy as np
from datetime import time
%matplotlib inline
Download the data
Download all four datasets from here: https://crtm.maps.arcgis.com/apps/MinimalGallery/index.html?appid=a60bb2f0142b440eadee1a69a11693fc and store in data\raw\
path = os.getcwd()
print("Current working directory:", path)
# create sub-folders in 'data' folder
for x in ['raw', 'interim', 'processed']:
temp = os.path.join('../data/', x)
try:
os.mkdir(temp)
except:
print('Folder', temp, 'already exists.')
# download and save raw datasets
# HOGARES
url = 'https://crtm.maps.arcgis.com/sharing/rest/content/items/d9e8c48ae6a1474faa34083239007307/data'
r = requests.get(url, allow_redirects=True)
output = open('../data/raw/EDM2018HOGARES.xlsx', 'wb')
output.write(r.content)
output.close()
# INDIVIDUOS
url = 'https://crtm.maps.arcgis.com/sharing/rest/content/items/07dad41b543641d3964a68851fc9ad11/data'
r = requests.get(url, allow_redirects=True)
output = open('../data/raw/EDM2018INDIVIDUOS.xlsx', 'wb')
output.write(r.content)
output.close()
# VIAJES
url = 'https://crtm.maps.arcgis.com/sharing/rest/content/items/6afd4db8175d4902ada0803f08ccf50e/data'
r = requests.get(url, allow_redirects=True)
output = open('../data/raw/EDM2018VIAJES.xlsx', 'wb')
output.write(r.content)
output.close()
# XETAPAS
url = 'https://crtm.maps.arcgis.com/sharing/rest/content/items/81919e30e674422d93203a3190eafcdc/data'
r = requests.get(url, allow_redirects=True)
output = open('../data/raw/EDM2018XETAPAS.xlsx', 'wb')
output.write(r.content)
output.close()
# display content of 'raw' folder
print('\n"../data/raw" folder contains:')
print(os.listdir('../data/raw'))
ind = pd.read_excel('../data/raw/EDM2018INDIVIDUOS.xlsx')
hog = pd.read_excel('../data/raw/EDM2018HOGARES.xlsx')
via = pd.read_excel('../data/raw/EDM2018VIAJES.xlsx', dtype = {'VORIHORAINI':str, 'VDESHORAFIN':str}) # specify times to be read as strings
etap = pd.read_excel('../data/raw/EDM2018XETAPAS.xlsx')
# set unique identifiers as index for each DataFrame
via.set_index(["ID_HOGAR", "ID_IND", "ID_VIAJE"], inplace = True)
ind.set_index(["ID_HOGAR", "ID_IND"], inplace = True)
hog.set_index("ID_HOGAR", inplace = True)
etap.set_index(["ID_HOGAR", "ID_IND", "ID_VIAJE"], inplace =True)
people = hog.join(ind, lsuffix = "_hog", rsuffix = "_ind")
trips = people.join(via, rsuffix = "_via")
legs = trips.join(etap, rsuffix = "_etap")
# people is a dataset of households and unique people
people.to_csv(r'..\data\interim\people.csv', index = False)
# trips includes households, people and unique trips
trips.to_csv(r'..\data\interim\trips.csv', index = False)
# legs includes households, people, trips and unique legs
legs.to_csv(r'..\data\interim\legs.csv', index = False)
## you likely want to work with "trips" for analysing mobility patterns.
codes_hog = pd.read_excel ('../data/raw/EDM2018HOGARES.xlsx', sheet_name = 1)
codes_ind = pd.read_excel ('../data/raw/EDM2018INDIVIDUOS.xlsx', sheet_name = 1)
codes_via = pd.read_excel ('../data/raw/EDM2018VIAJES.xlsx', sheet_name = 1)
codes_etap = pd.read_excel ('../data/raw/EDM2018XETAPAS.xlsx', sheet_name = 1)
# append all codes to a single file
codes = codes_hog.append(codes_ind, ignore_index = True, sort = False
).append(codes_via, ignore_index = True, sort = False
).append(codes_etap, ignore_index = True, sort = False
).drop(columns = ["Unnamed: 0", "Unnamed: 1"])
# forward fill varibale and specification to work as proper table (and not only visually in Excel)
codes["VARIABLE"] = codes.VARIABLE.fillna(method = "ffill")
codes["ESPECIFICACIÓN"] = codes["ESPECIFICACIÓN"].fillna(method = "ffill")
# split code and value
codes['CODE'], codes['VALUE'] = codes['VALORES'].str.split(".", 1).str
codes['CODE'], unused = codes.CODE.str.split(" '", 1).str
codes.drop(index = codes[codes.VARIABLE.isna()].index, inplace = True)
codes.to_csv('../data/interim/codes.csv', index = False)
Translate codes by using Google Sheets.
(Google API Package for Python wasnt working? https://pypi.org/project/googletrans/ ) Option to use the Google translate API (https://cloud.google.com/translate/docs/reference/rest) but for this use case wasnt really worth to set it up.
- Translation is stored in data\processed\codes_translated.csv
# trips = pd.read_csv(r'..\data\interim\trips.csv', dtype = {'VORIHORAINI':str, 'VDESHORAFIN':str})
codes = pd.read_csv(r'..\data\processed\codes_translated.csv', dtype = {'CODE': float})
Set value of sex to 'Man' and 'Woman' instead of numbers.
code_sex = codes[codes.VARIABLE == "C2SEXO"][['CODE', 'VALUE_en']].rename({'VALUE_en': 'sex'}, axis = 1)
trips = trips.join(code_sex.set_index('CODE'), on = "C2SEXO")
Compute duration from start (VORIHORAINI) and endtime (VDESHORAFIN).
mins = pd.to_numeric(trips.VDESHORAFIN.str.slice(2)) - pd.to_numeric(trips.VORIHORAINI.str.slice(2))
hours = (pd.to_numeric(trips.VDESHORAFIN.str.slice(0, 2)) - pd.to_numeric(trips.VORIHORAINI.str.slice(0, 2))) * 60
trips["duration"] = mins + hours
Create a datetime object from string.
trips['start_time'] = pd.to_datetime(trips.VORIHORAINI, format = '%H%M').dt.time
Endtimes sometimes exceeds 24 hours. (If a trip starts at 11pm and ends at 1am, then the endtime is 2500). Datetime does not work with times > 24h. Therefore this needs to be fixed.
trips["end_time"] = np.where(pd.to_numeric(trips['VDESHORAFIN']) > 2400,
pd.to_numeric(trips['VDESHORAFIN']) - 2400,
pd.to_numeric(trips['VDESHORAFIN']))
trips['end_time'] = pd.to_datetime(trips.end_time, format = '%H%M', errors = 'coerce').dt.time
trips["speed"] = np.where(trips.duration != 0, # skip if start and Endtime is the same
trips.DISTANCIA_VIAJE / (trips.duration / 60), np.NaN)
trips.loc[trips.speed > 150, "speed"] = None
The original survey has a 24 different modes:
- 1: Renfe Cercanías (train)
- 2: Autobus interurbano (intercity bus)
- 3: Autobus urbano otro municipio (urban bus other municipalities)
- 4: Metro (metro)
- 5: Metro ligero/tranvía (light train)
- 6: Autobus urbano Madrid EMT (urban bus Madrid)
- 7: Resto renfe (train)
- 8: Autobus discrecional (unscheduled bus)
- 9: Autobus de largo recorrido (intercity bus)
- 10: Taxi (taxi)
- 11: Coche conductor particular (private car)
- 12: Coche conductor empresa (business car)
- 13: Coche conductor alquiler sin conductor (car rental without driver)
- 14: Coche pasajero particular (private car passenger)
- 15: Coche pasajero empresa (business car passenger)
- 16: Coche pasajero alquiler con conductor (car rental with driver)
- 17: Moto/ciclomotor particular (private motorcycle)
- 18: Moto/ciclomotor publica (public motorcycle)
- 19: Moto/ciclomotor empresa (business motorcycle)
- 20: Bicicleta particular (private bicycle)
- 21: Bicicleta publica (public bicycle)
- 22: Bicicleta empresa (business bicycle)
- 23: Otros (other)
- 24: Andando/pie (walk)
These are simplified to four modes:
- public transport
- car
- other (including motorbicycle and bicycle)
- walk
code_mode = codes[codes['VARIABLE'] == 'MODO_PRIORITARIO'][['CODE', 'VALUE_en']].drop_duplicates()
trips = trips.join(code_mode.set_index('CODE'), on = 'MODO_PRIORITARIO', how = "left").reset_index()
trips.rename({"VALUE_en": "mode"}, axis = "columns", inplace = True)
trips["mode_simple"] = trips.MODO_PRIORITARIO
trips.loc[trips.MODO_PRIORITARIO < 10, "mode_simple"] = "public transport"
trips.loc[(trips.MODO_PRIORITARIO > 9) & (trips.MODO_PRIORITARIO < 17), "mode_simple"] = "car"
trips.loc[(trips.MODO_PRIORITARIO > 16) & (trips.MODO_PRIORITARIO < 24), "mode_simple"] = "other"
trips.loc[trips.MODO_PRIORITARIO == 24, "mode_simple"] = "walk"
The original survey has 12 trip motives:
- 1: Casa (Home)
- 2: Trabajo (Work)
- 3: Gestión de trabajo (work management?)
- 4: Estudio (study)
- 5: Compras (Purchases)
- 6: Médico (Doctor)
- 7: Acompañamiento a otra persona (Acompany another person)
- 8: Ocio (leisure)
- 9: Deporte/ dar un paseo (sport)
- 10: Asunto personal (personal matter)
- 11: Otro domicilio (other residence)
- 12: Otros (other)
These are simplified to 5 trip motives:
- work
- study
- car / errand
- leisure
- other
code_motive = codes[codes['VARIABLE'] == 'MOTIVO_PRIORITARIO'][['CODE', 'VALUE_en']]
trips = trips.join(code_motive.set_index('CODE'), on = 'MOTIVO_PRIORITARIO').reset_index()
trips.rename({"VALUE_en": "motive"}, axis = "columns", inplace = True)
trips.loc[:,"motive_simple"] = trips.motive
trips.loc[(trips.MOTIVO_PRIORITARIO == 2) | (trips.MOTIVO_PRIORITARIO == 3), "motive_simple"] = "work"
trips.loc[((trips.MOTIVO_PRIORITARIO >= 5) & (trips.MOTIVO_PRIORITARIO <= 8) | (trips.MOTIVO_PRIORITARIO == 10)), "motive_simple"] = "care / errand"
trips.loc[(trips.MOTIVO_PRIORITARIO >= 8) & (trips.MOTIVO_PRIORITARIO <= 9), "motive_simple"] = "leisure"
trips.loc[(trips.MOTIVO_PRIORITARIO == 1) | (trips.MOTIVO_PRIORITARIO == 11) | (trips.MOTIVO_PRIORITARIO == 12), "motive_simple"] = "other"
Traffic can be divided into three main categories time wise:
- rush hour (usually morning and afternoon)
- off-peak (usually during the day)
- low traffic (usually night and weekend)
A new category 'daytime' is created for this.
conditions = [
((trips.start_time >= time(7)) & (trips.start_time < time(9))) | ((trips.start_time >= time(17)) & (trips.start_time < time(20))),
(trips.start_time >= time(9)) & (trips.start_time < time(17)),
(trips.start_time >= time(20)) | (trips.start_time < time(7))
]
choices = ['rush hour (HVZ)', 'off-peak hour (NVZ)', 'low traffic time (SVZ)']
trips['daytime'] = np.select(conditions, choices, default= None)
Round age to 5 to get larger groups with the same age and make it easier to work with.
trips["rounded_age"] = 5 * (trips.EDAD_FIN / 5).round()
Create four different age groups:
- kids (<= 18)
- young adults (18-25)
- adults (25 - 55)
- seniors (> 55)
conditions = [
trips.EDAD_FIN <= 18,
(trips.EDAD_FIN > 18) & (trips.EDAD_FIN <= 25),
(trips.EDAD_FIN > 25) & (trips.EDAD_FIN <= 55),
trips.EDAD_FIN > 55]
choices = ['kids', 'young adults', 'adults', 'seniors']
trips['age_group'] = np.select(conditions, choices, default= None)
trips.drop(["index"], axis = 1, inplace = True)
trips.to_csv(r'..\data\processed\trips_custom_variables.csv', index = False)